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Abstract: QSAR is among the most extensively used computational methodology for analogue-based design. 

A molecular modeling strategy using flavonoids analogue recently reported in the literature was designed. A 
multiple linear regression (MLR) model using stepwise method is based on 24 molecules has been developed 
for the prediction of the EC50 of some anticancer drugs using these quantum chemical descriptors, the most 
important class in modeling these series of compounds followed by constitutional, topological and 
physicochemical descriptors derived from e-dragon . The accuracy of the proposed MLR model was illustrated 
using the following evaluation techniques: cross-validation, and Y-randomisation. The results obtained showed 

the excellent prediction ability and stability of the proposed model in the prediction of anticancer BCRP 
inhibition bio-activity of flavonoids analogues found satisfactory and could be used for the designing a similar 
group of anticancer drugs. 
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Introduction 

 Quantitative structure–activity relationship (QSAR) can aid in identifying functional groups with their 
various structural parameters used to increase the bioactivity leads designing new structures with the variation 
in enhanced bioactivity depends on changes in chemical structure[1-3]. The use of graph theoretical approaches 
to describe the chemical structure of organic compounds has accomplished more and more relevance along the 
later years. Since the early times in which such formalism was used to predict simple properties on simple 
molecules, up to the design- for instance- of novel lead anticancer drugs, a significant progress was achieved 

and a long path has been covered. In order to outline the particular QSAR techniques used with this 
methodology, descriptors will be defined before explaining the modeling tools applied with them. Diverse 
statistical and molecular techniques will be sketched. The inverse problem of finding compounds with desired 
activity and properties has also attracted attention. Such an inverse-QSAR formulation directly focuses on the 
goal of drug design, i.e., discovery of active compounds with good pharmacokinetic and other properties[1-8]. 

 Cancer is one of the most formidable afflictions in the world. Although cancer mortality is second to 
heart disorders, the first is steadily increasing, while the latter is leveling off. Cancer may affect people at all 
ages, even fetuses, but risk for the more common varieties tends to increase with age. Cancer causes about 13% 
of all deaths. Nearly all cancers are caused by abnormalities in the genetic material of the transformed cells. 

These abnormalities may be due to the effects of carcinogens, such as tobacco smoke, radiation, chemicals, or 
infectious agents [9-13]. Flavonoids such as chrysin, nbiochanin A and apigenin a very low micromolar 
concentration is capable of producing 50% (EC50) of the maximum increase in mitoxantrone (MX) inhibitor 
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substrate accumulation (interaction) with breast cancer resistance protein (BCRP), helping the multi-drug 
resistance (MDR) mechanism of over expressing cancer cells[14-17]. 

Materials And Methods 

Data set 

The biological data used in this study were anticancer activity, EC50, of a set of twenty four flavonoids 
analogue derivatives. The data set of 24 flavonoids analogue used for the QSAR models in this study were 
taken from the published work of  Mihai V. Putz, Luciana Ienciu and Adrain Chiriac and his coworkers [18]. 
The range of –log10 (EC50[μM]) values was 2.25-7.14 μM, more than two orders of magnitude between the most 
and least potent derivative used as dependent variable in our model. The structural features, biological activity 
and predicted biological activity with residuals of these compounds are listed in Table 1. 

 

 

 

 

Fig 1: Parent structure of flavonoids 

Calculation of descriptors 

 It is important to note that quantum chemical descriptor, Constitutional descriptors and topological 
descriptors are based solely on chemical structure. The calculated topological indices treat the structure of the 
compound as a graph, with atoms as vertices and covalent bonds as edges. The number of different descriptors 
reaches thousand in some leading commercial tools. Having at hand powerful methods for automatically 
selecting the informative features, one may be tempted to leave the descriptor selection process entirely to 
algorithmic techniques. Quantum-chemical descriptors and molecular modeling techniques enable the definition 

of a large number of molecular and local quantities characterizing the reactivity, shape and binding properties of 
a complete molecule as well as of molecular fragments and substituents. Because of the large well-defined 
physical information content encoded in many theoretical descriptors, their use in the design of a QSAR study 
presents two main advantages: (a) the compounds and their various fragments and substituents can be directly 
characterized on the basis of their molecular structure only; and (b) the proposed mechanism of action can be 
directly accounted for in terms of the chemical reactivity of the compounds under study. Constitutional 
descriptors capture properties of the molecule that are related to elements constituting its structure. These 

descriptors are fast and easy to compute. The reason is that whereas the conventional physical and geometrical 
descriptors are structure-related, topological indices are just an algebraic description of the structure itself. 
Thus, one can go backward and forward between structure and property, predicting properties for molecules and 
vice versa. the molecular descriptor is the final result of a logic and mathematical procedure which transforms 
chemical information encoded within a symbolic representation of a molecule into a useful number or the result 
of some standardized experiment [19-39].  

Table 1: Molecular name of flavonoinds derivatives used in this study, their experimental and predicted 

              activity and their residuals of best three statistical significant QSAR models for anticancer BCRP    

              inhibition bioactivity.  

 

Com.N
o. 

Molecular Name Exp. 
EC50 

QSAR  Eq.02 QSAR  Eq.03 QSAR  Eq.04 

Pred. 

EC50 

Residua

l 

Pred. 

EC50 

Residual Pred. 

EC50 

Residual 

01 Silybin 3.74 3.758 -0.018 3.720 0.020 3.745 -0.005 

02 Daidzein 4.24 4.776 -0.536 4.873 -0.633 4.747 -0.507 

03 Naringenin 4.49 4.931 -0.441 4.682 -0.192 4.546 -0.056 

04 Flavanone 4.60 4.851 -0.251 4.616 -0.016 4.563 0.037 

05 7,8-Dihydroxyflavone 4.70 5.739 -1.039 5.685 -0.985 - - 

06 7-Methoxyflavanone 4.79 5.395 -0.605 5.302 -0.512 5.243 -0.453 
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07 Genistein 4.83 4.986 -0.156 5.048 -0.218 4.924 -0.094 

08 6,2,3-7-hydroxyflavanone 4.85 4.820 0.030 4.553 0.297 4.386 0.464 

09 Hesperetin 4.91 4.711 0.199 4.804 0.106 4.685 0.225 

10 Chalcone 4.93 4.838 0.092 4.902 0.028 4.970 -0.040 

11 Kaempferol 5.22 5.515 -0.295 5.462 -0.242 5.377 -0.157 

12 4,5,7,Trimethoxyflavanone 2.25 5.485 -0.235 5.337 -0.087 5.309 -0.059 

13 Flavone 5.40 5.068 0.332 5.176 0.224 5.164 0.236 

14 Apigenin 5.78 4.951 0.829 5.054 0.726 - - 

15 Biochanin A 5.79 5.303 0.487 5.666 0.124 5.632 0.158 

16 5,7-Dimethoxyflavone 5.85 5.968 -0.118 6.219 -0.369 6.260 -0.410 

17 Galangin 5.92 6.221 -0.301 5.982 -0.062 5.981 -0.061 

18 5,6,7-Trimethoxyflavone 5.96 6.007 -0.047 6.120 -0.160 6.162 -0.202 

19 kaempferide 5.99 5.802 0.188 6.126 -0.136 6.151 -0.161 

20 8-methylflavone 6.21 5.603 0.607 5.771 0.439 5.795 0.415 

21 6,4-Dimethoxy-3-hydroxy-
flavone 

6.35 6.127 0.223 5.929 0.421 5.970 0.380 

22 Chrysin 6.41 5.511 0.899 5.458 0.952 - - 

23 2-hydroxy-α-naphtoflavone 7.03 7.033 -0.003 6.864 0.166 6.845 0.185 

24 7,8-Benzoflavone 7.14 6.981 0.159 7.032 0.108 7.037 0.103 

 

Table 2: List of indices used in QSAR modeling and their description 

 

 
 

 

 

 

 

 

 

Statistical analysis  

 The data set was analysed using NCSS statistical software[39]. Stepwise regression analysis was used 
to determine the most significant descriptors. The regression coefficients were obtained by least-squares 
regression analysis. For each regression, the following descriptive information is provided: number of 
observations used in the analysis (n), correlation coefficient (r), cross-validated (R2

cv), standard error of the 
estimate (Se), Mean of standard error of estimation (MSe), adjusted regression coefficient (R2

adj) and Fisher's 

criterion (F). Statistical parameters were calculated subsequently for each step in the process, so the significance 
of the added parameter could be verified. Correspondingly, it represents the part of the variation in the observed 
(experimental) data that is explained by the model. Y-randomization is a tool used in validation of QSPR/QSAR 
models, whereby the performance of the original model in data description is compared to that of models built 
for permuted (randomly shuffled) response, based on the original descriptor pool and the original model 
building procedure. 

Correlation Analysis 

 Pearson's correlation coefficients may serve as a preliminary filter for discarding inter-correlated 
descriptors. This can be done by e.g. creating clusters of descriptors having correlation coefficients higher than 

certain threshold and retaining only one, randomly chosen member of each cluster. Table 3 describes correlation 
coefficient between the chosen descriptors and anticancer bioactivity. Firstly, the descriptors were checked for 

No. Abbreviation Description Block 

1 MW molecular weight Constitutional indices 

2 SMTIV 

Schultz Molecular Topological Index by 

valence vertex degrees Topological indices 

3 GMTIV 
Gutman Molecular Topological Index by 
valence vertex degrees Topological indices 

4 Xu Xu index Topological indices 
5 Wap all-path Wiener index Topological indices 

6 MAXDN 
maximal electrotopological negative 
variation Topological indices 

7 BID Balaban ID number Walk and path counts 
8 X3 connectivity index of order 3 Connectivity indices 

9 DEN Density Physicochemical indices 
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constant or near constant values and those detected were removed from the original data matrix. Then, the 

correlation of descriptors with each other's and with the activity data was determined. Among the collinear 
descriptors detected (r > 0.8), one of them that had the highest correlation with activity was retained and the rest 
were omitted. Recent studies have shown that both yield small prediction error in numerous QSAR applications. 
Given the complexity of these methods, one may be tempted to treat them as black boxes[41-47].

Table 3: Correlation matrix between the used descriptors in QSAR modeling 

 EC50 MW DEN SMTIV GMTIV Xu Wap MAXDN BID X3 

EC50 1.0000          

MW 

-

0.1952 1.0000         

DEN 

-
0.1869 0.3693 1.0000        

SMTIV 

-
0.3216 0.9602 0.3238 1.0000       

GMTIV 

-
0.3476 0.9536 0.3782 0.9977 1.0000      

Xu 

-

0.1724 0.9964 0.3155 0.9640 0.9540 1.0000     

Wap 

-
0.2956 0.8747 0.2113 0.9650 0.9595 0.8907 1.0000    

MAXDN 

-
0.2207 0.7128 0.7941 0.7197 0.7528 0.6791 0.6200 1.0000   

BID 

-
0.0978 0.9913 0.3697 0.9242 0.9148 0.9892 0.8363 0.6811 1.0000  

X3 

-
0.1331 0.9808 0.3679 0.9519 0.9447 0.9816 0.9023 0.6967 0.9814 1.0000 

 

Result And Discussion 

 In the first step, separate stepwise selection-based MLR analysis were performed using different types 

of descriptors, and then, an MLR equation was obtained utilizing the pool of all calculated descriptors. The 
resulted QSAR models from different types of descriptors for the compounds (24 molecules) are listed in Table 
2-3. Based on the results of the above analysis, the QSAR equation with the largest cross-validation coefficient 
was obtained for 24 compounds are given in table 3. Among the several models, one of the best models was 
selected from each cell line and the results are summarized in Table 3. The best QSAR model has characters of 
large F, small Se, R and R2

cv values close to 1. The QSAR study leads to the development of statistically 
significant model, which allows understanding of the molecular properties/features that play an important role 

in governing the variation in activities. Usually, the chemoinformatic methods underlying QSAR analysis are in 
constant advancement. Well-established techniques continue to be used, providing successful results especially 
in small, homogeneous datasets consisting of compounds relating to a single mode of action [49-51].   

 QSAR/QSPR models no. 1,2 and 03 indicate that the anticancer BCRP inhibition bio-activity of 
flavonoids increase with the magnitude of X3, Wap, Xu, MAXDN, BID while Gutman Molecular Topological 
Index by valence vertex degrees (GMTIV), molecular weight (MW), Density show negative contribution with 
the anticancer BCRP inhibition bio-activity. 

 The X3 represents the accessibility of a bond to encounter another bond in intermolecular interactions, 
as the reciprocal of the vertex degree δ is the fraction of the total number of non-hydrogen sigma electrons 
contributing to each bond formed with a particular atom [52-69]. This interpretation places emphasis on the 
possibility of bimolecular encounters among molecules, reflecting the collective influence of the accessibilities 
of the bond in each molecule to other molecules in its immediate environment. 

 The Balaban ID number indices is a very discriminating molecular descriptor and its values do not 

increase substantially with molecule size or number of rings [70-76]. the presence of three serious outliers  
compounds namely compound no. 05 (7,8-Dihydroxyflavone), 14 (Apigenin) and 22 (Chrysin) in the series of 
flavonoids analogue and after deleting these the statistically significant  QSAR/QSPR model no.04 with 
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positive contribution of topological descriptors and negative contribution of physicochemical descriptors i.e. the 

increase in the anticancer BCRP inhibition bioactivity of flavonoids analogues undergo with the increase in the 
magnitude of BID and MAXDN and decreases in the magnitude of molecular weight and Density. The 
correlation represents the intrinsic density of the flavonoids analogue calculated as the ratio of the molecular 
mass and molecular volume (represents by the overlapping Vander waal atomic spheres model) of the molecule. 

 Table 4: Developed QSAR/QSPR models by using both chemical and topological descriptors flavonoids  
                 analogues with validated and cross-validated statistical descriptors 

                                                                                                                                                                                                      

n = no. of compounds, Se= standard error of estimation, r= correlation coefficient, F= fischer criterion, PRESS= 
Predicted Residual Sum of Squares, MSe= Mean of Standard error of estimation, R2

adj= adjusted regression 
coefficient, R2

cv= cross validated regression coefficient 

QSAR model no.01 to 04 and the used topological and physicochemical descriptor describes that in  
flavonoids analogue metabolization operation started on the same planer configuration of molecule. 

Methoxylation of oxygens in position 10 , 08 and 14.Direct hydroxylation in position 10, 08 and 14 position 
resulting the metabolization of molecule 13 (flavone) in molecule 03 (naringenin). While on hydroxylation on 
the indicated position 09, 08, 16 and 15 turing the molecule no.8 into 03 on by reverse hydroxylation in 16 and 
15 with direct hydroxylation of position 4 and with movement from ortho 9 to para 10 of hydroxyl group on 
ring A respecting pattern molecule in figure1. 

 

 

 

 

 

 

 

Fig 2: Graph between the predicted anticancer BARP inhibition bioactivity of flavonoids ananlogue of 

developed QSAR model no.02 and 03 against actual anticancer BCRP inhibition bioactivity 

 

Mode

l No. 

QSAR/QSPR Models n Se r F PRES

S 

MSe R
2

ADJ R
2
cv 

01 EC50 =   1.6249E-02+ 1.02062X3 

                                                   -1.9392E-
04GMTIV 

24 1.570
8 

0.689
6 

9.521 12.84
7 

0.430
6 

0.425
6 

0.25
5 

02 EC50 =  -11.2346+ 0.9052Xu 
                          +1.5766E-04Wap 
                          + 2.5164MAXDN 
                          -6.0788E-

04GMTIV 

24 2.708
8 

0.855
1 

12.92 08.95
5 

0.243
9 

0.674
5 

0.48
1 

03 EC50 =  -102.2566+ 3.0670MAXDN 
                            + 48.4727BID 
                            -0.1467MW 
                            -4.9642DEN 

24 14.26
9 

0.877
2 

15.85 5.120
5 

0.209
1 

0.721
0 

0.70
3 

04 EC50 =  -106.0590 + 
3.5035MAXDN 
                            + 50.3744BID 

                            -0.1529MW 
                            -5.8422DEN 

21 9.447 0.952
4 

38.98 2.092 0.090 0.883 0.86 
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Fig 3: Graph between the predicted anticancer BARP inhibition bioactivity of flavonoids analogue of 
developed QSAR model no. 04 against actual anticancer BCRP inhibition bioactivity 

 

 

 

 

 

 

Fig 4: Graph between observed EC50 and Residuals of developed QSAR model no.02 and 03. 

 

 

 

 

 

 

 

Fig 5: Graph between observed EC50 and Residuals of developed QSAR model no.04 

Conclusion  

 The present study affirms the position 8, 14 respecting the pattern molecule in figure1 as the most 
suitable ones for producing an increase in BCRP inhibition activity. The position no.7 may present adverse drug 
interactions. The present QSAR study may allow interpretetation inter-conversion of concerned molecules 
towards receptor binding since belonging to the same class of analogs, while they certainly undertaking such 
transformation during their interaction with macromolecules, proteins and enzymes present on cellular walls or 
with in vivo environment. All potential interconversion of employed molecules involved in correlation as well 
as for establishing their quantum metabolization complete map. Combined with the increased complexity of the 
inspected datasets, this makes the QSAR analysis a challenging endeavor. The graph between actual anticancer 

BCRP inhibition bioactivity of flavonoids analogue and predicted anticancer BCRP inhibition bioactivity of 
statistically significant developed QSAR/QSPR model . the QSAR studies can offer important insights into 
designing high activity compounds prior to synthesis. Based on the established model, as well as the law of 
polarity alternation and the idea of polarity interference, new compounds with higher predicted anticancer 
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BCRP inhibition bio-activity have been theoretically designed, and they are expected to be confirmed 
experimentally. 
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